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the major aim of $2 was neither TDS corrections nor their 
comparison using different methods. 

2. It is stated in S1 and $2 and I confirm it again that 
while TDS corrections were applied in $2, no such correc- 
tions were applied in S1. In view of the published erratum 
in $3, S1 and $2 cannot be considered to present identical 
results. Furthermore, since I have more than a little doubt 
on the validity of TDS corrections, it was not felt desirable 
to give structure factors after such corrections. The struc- 
ture factors in $2 were only introduced to emphasize a 
point on the accuracy of the observed data. The sole pur- 
pose of applying TDS corrections in $2 was to make a com- 
parison of the root-mean-square (r.m.s.) values with those 
quoted by Meisalo & Merisalo (1966). Although the r.m.s. 
value for the fluorine ion is no longer significantly different 
from that of Meisalo & Merisalo, I disagree that for the 
sodium ion the statistical hypothesis fails at even the 'pos- 
sibly significant' level (Cruickshank, 1965). Simple calcula- 
tions show that A/a ~_ 2.50 for the sodium ion. 

3. Killean's conclusion that S1 and $2 are identical is 
incorrect and deserves more serious attention. To mention 
the major difference, S1 is devoted to the investigation of 
the type of extinction in a small sphere of sodium fluoride 
using Zachariasen's (1967) theory of extinction, as well as 
to the discussion of the physical significance of the extinc- 
tion parameter obtained from consideration of normal 
crystal strain in real crystals, whereas, $2 lays major em- 

phasis on the comparison of r.m.s, values of sodium and 
fluorine ions from a single crystal and powder data respec- 
tively after TDS corrections. It was not felt necessary to 
refer to S1 in $2 as each of the two papers stands alone and 
has a specific point to make. 

In conclusion, it is abundantly clear that Killean is ad- 
vocating a false 'caution' and his statement that 'Shar- 
ma's erratum is not just correcting typographical errors' is 
not only baseless but also erroneous. 
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The well-known relation for the angular divergence of beams diffracted from a perfect crystal in an asym- 
metric diffraction condition is derived straightforwardly from first principles. 

When a divergent beam of X-rays (or neutrons or other 
particles) is diffracted by a perfect crystal in an asymmetric 
diffraction geometry, the angular divergence, A0out, of the 
outgoing beam is given by the well-known relation 

A 0out = m-  1/2cos, (1) 

where COs is the rocking curve widtfi for a symmetric reflec- 
tion from the relevant diffracting planes and m is the magni- 
fication or asymmetry factor. If the incoming and out- 
going beams make the angles 0~ and 0out, respectively, 
with the crystal surface, the magnification factor, m, is 
given by 

sin 0ou t 
m =  sin 0in " (2) 

This relation has been exploited in the measurement of 
rocking curve widths with double and triple crystal spectrom- 
eters (Renninger, 1961; Kohra, 1962); it has significant 
practical importance, since this fact facilitates the produc- 
tion of a highly collimated monochromatic beam, as de- 
monstrated by Kohra & Kikuta (1968). It should be noted 
that this condition also provides a beam of considerably 
large size which may replace a scanning method in diffrac- 
tion topography. 

Kohra (1962) employed a sort of reciprocity law to 
explain relation (1). Warren (1969) obtained relation (1), 
using a row of atoms lying parallel to the crystal surface. This 
idea was motivated by Borie's (1966, 1967) work where the 
basic principle is Fresnel diffraction by one of the vertical 
atomic layers rather than by the horizontal Bragg (diffrac- 
ting) planes. Recently in the International Summer School 
on X-ray Dynamical Theory and Topography in Limoges, 
France, 1975, Kohra again explained this relation virtually 
by a mixture of the two above-mentioned arguments. These 
explanations are admittedly incomplete, although ap- 
pealing. 

The angular divergent behavior, relation (1), can be 
derived in a straightforward, though very trivial, manner. 
The basic concept is conservation of momenta parallel to 
the crystal surface (Ashkin & Kuriyama, 1966) which has 
been known traditionally as 'the continuity condition of 
tangential components of wave vectors'. The incoming and 
outgoing momenta are denoted by kin and kout, respective- 
ly. Let H be a reciprocal lattice vector. In addition to 
energy conservation (elastic scattering), the two-dimen- 
sional ~ function in the dynamical scattering theory 
demands that 

(ko.,), = (k,~ + I-I),, (3) 
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where t indicates the component of a vector projected on 
the crystal surface. Using the incoming and outgoing angles 
defined before, one can write 

Ikl cos 0o,t = Ikl cos 0in + n t ,  (4) 

where Ikl = Ik~n[ = Ikootl. This relation is reduced by differen- 
tiation to 

AOout = sin 01_______~ AOin = 1 AO~u. (5) 
sin 0out m 

The divergence of the incoming beam normally guarantees 
that the full range of the rocking curve width is utilized to 
produce the diffracted beam. Hence, from dynamical 
theory, AOin is given by 

,d01n ---- ml/2fOs. (6) 

Thus, AOout is obtained by substituting (6) into (5), resulting 
in the identical equation to that shown in relation (1). When 

a crystal becomes imperfect, relation (3) is relaxed, thus 
resulting in a larger divergence. 

These principles are applicable not only to the Bragg 
geometry, but also to the Laue geometry. In particular, the 
above results extend to the Laue geometry with parallel 
surfaces without any modifications. 
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